
CHALLENGES IN

POINTER ANALYSIS

OF JAVASCRIPT

Ben Livshits

MSR

1

Area man says:

JavaScript leads the

pack as most popular

programming

language

2

JavaScript

Two Issues in

JavaScript Pointer

Analysis

3

• JavaScript programs on
the web are streaming

• Fully static analysis
pointer analysis is not
possible, calling for a
hybrid approach

• Setting: analyzing pages
before they reach the
browser

Gulfstream

• JavaScript programs
interop with a set of
reach APIs such as the
DOM

• We need to understand
these APIs for analysis to
be useful

• Setting: analyzing Win8
apps written in JavaScript

Use analysis

Gulfstream
• Staged Static Analysis for

Streaming JavaScript
Applications, Salvatore
Guarnieri, Ben Livshits,
WebApps 2009

6

Whole program

analysis?

What whole program?

7

8

9

JavaScript programs are streaming JavaScript programs are streaming

Facebook Code Exploration

10

OWA Code Exploration

11

Script Creation
<HTML>

 <HEAD>

 <SCRIPT>

 function foo(){...}

 var f = foo;

 </SCRIPT>

 <SCRIPT>

 function bar(){...}

 if (...) f = bar;

 </SCRIPT>

 </HEAD>

 <BODY onclick="f();"> ...</BODY>

</HTML>

12

What does f
refer to?

Plan
Server

• Pre-compute pointer
information offline, for most
of the program

• Optionally update server
knowledge as more code is
observed

Client

• When more code is
discovered, do analysis of it

• Combine the incremental
results with pre-computed
results

13

✔ ✔

Gulfstream In Action

14

Offline Online

✔ ✔ ✔

Checking a safety property

Is it faster to

1) transfer pre-computed results +
add incremental results

2) Compute everything from scratch

Simulated Devices

15

Try Different Configurations

16

• Slow devices benefit from
Gulfstream

• A slow network can negate the
benefits of the staged analysis

• Large page updates don’t benefit
from Gulfstream

“+” means that staged incremental analysis
is advantageous compared to full analysis on
the client.

Gulfstream Savings: Fast Devices

0

2

4

6

8

10

12

Se
co

n
d

s

profile

inbox

friends

home

17

10 seconds
saved

Gulfstream Savings: Slow Devices

0

50

100

150

200

250

300

350

Se
co

n
d

s

profile

inbox

friends

home

18

0

1

2

3

4

5

6

7

8

30 35 40 45 50 55 60 65

Se
co

n
d

s

Total Page Size (KB)

Gulfstream Full Analysis bddbddb

Laptop Running Time Comparison

19

Break even point:

After 30KB of updates,
incremental Gulfstream is no

longer faster

Conclusion

• Gulfstream, staged analysis for JavaScript

• WebApps 2010

• Staged analysis
• Offline on the server

• Online in the browser

• Wide range of experiments
• For small updates, Gulfstream is faster

• Devices with slow CPU benefit most

20

Pointer Analysis

and Use Analysis

21

Use Analysis
• Practical Static Analysis

of JavaScript Applications

• in the Presence of
Frameworks and
Libraries, Madsen,
Livshits, Fanning, in
submission, 2013

22

Motivation:

Win8 App Store

Native C/C++ apps

.NET aps

JavaScript/HTML apps

23

Win8 & Web Applications

24

Web App

DOM

Windows 8 App

Win8 WinJS Builtin DOM … jQuery Builtin DOM Win8 WinJS Builtin DOM … jQuery Builtin

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

25

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

26

Windows.Devices.Sensors
Windows.Devices.Sms
Windows.Media.Capture
Windows.Networking.Sockets
…

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

27

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

28

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

29

Practical Applications
• Call graph discovery

• API surface discovery

• Capability analysis

• Auto-complete

• Concrete type inference

• Runtime optimizations

30

str int ref ref

memory layout

Canvas Dilemma
var canvas = document.querySelector("#leftcol .logo");

var context = canvas.getContext("2d");

context.fillRect(20, 20, c.width / 2, c.height / 2);

context.strokeRect(0, 0, c.width, c. height);

31

• model querySelector as
returning a reference to
HTMLElement:prototype

• However,
HTMLElement:prototype does
not define getContext, so
getContext remains unresolved

• Model querySelector as
returning any HTML element
within underlying page

• Returns elements on which
getContext is undefined

Introducing Use Analysis

32

elm flows into
playVideo

elm flows into
reset

elm must have:
muted and play

elm must have:
pause

Pointer vs. Use Analysis

•Pointer analysis deals
with “concrete” facts

•Facts we can observe

• variables declared in the
program

• allocation sites

33

Pointer vs. Use Analysis

• Use analysis deals with the
“invisible” part of the heap

• It can exist entirely outside
the JavaScript heap

• Constraints flows from callers
to callees

34

Promises

driveUtil.uploadFilesAsync(

 server.imagesFolderId).

 then(function (results) {...}))

analysis correctly maps then to

 WinJS:Promise:prototype.then

35

Local Storage

var json =

 Windows.Storage.

 ApplicationData.current.

 localSettings.values[key];

correctly resolves localSettings to an instance of
Windows:Storage:ApplicationDataContainer

36

Benchmarks

37

25 Windows 8 Apps:
Average 1,587 lines of code

Approx. 30,000 lines of stubs

25 Windows 8 Apps:
Average 1,587 lines of code

Approx. 30,000 lines of stubs

Evaluation: Summary
• The technique improves call graph resolution

• Unification is both effective and precise

• The technique improves auto-completion compared
to what is found in four widely used IDEs

• Analysis completes in a reasonable amount of time

38

Call Graph Resolution

39

Baseline

Partial

Median baseline
resolution is 71.5%

Median partial
resolution is 81.5%

Validating Results

• Incomplete is # of call sites
which are sound, but have
some spurious targets (i.e.
imprecision is present)

• Unsound is the number of
call sites for which some
call targets are missing (i.e.
the set of targets is too
small)

• Stubs is the number of call
sites which were
unresolved due to missing
or faulty stubs.

40

Auto-complete
• We compared our technique to the auto-complete in four

popular IDEs:
• Eclipse for JavaScript developers

• IntelliJ IDEA

• Visual Studio 2010

• Visual Studio 2012

• In all cases, where libraries were involved, our technique was
an improvement

41

Auto-complete

42

Running Times

43

Median runtime for
partial is 10.5 sec

All benchmarks
complete within
22.0 sec

Analysis is not
incremental – room
for improvement

Two Issues in

JavaScript Pointer Analysis

Gulfstream
• JavaScript programs on the

web are streaming

• Fully static analysis pointer
analysis is not possible,
calling for a hybrid approach

• Setting: analyzing pages
before they reach the
browser

JSCap
• JavaScript programs interop

with a set of reach APIs
such as the DOM

• We need to understand
these APIs for analysis to be
useful

• Setting: analyzing Win8
apps written in JavaScript

45

